Raspberry Pi recepten (Deel 5) I²C: Inter-IC-Cake

Tony Dixon (Verenigd Koninkrijk)

In de vorige twee delen hebben we gekeken naar de UART- en SPI-interfaces op de uitbreidingsconnector van de Raspberry Pi. We beginnen al behoorlijk ervaren *elektro-bakkers* te worden. Hoog tijd om te gaan kijken naar de laatste seriële interface van de Raspberry Pi: de I²C-bus.

I²C-interface

De Inter-IC- of I²C-bus is de laatste van de drie seriële interfaces op de uitbreidingsconnector van de Raspberry Pi. De andere twee zijn de UART-interface (zie deel 3) en de SPI-interface (zie deel 4).

In **tabel 1** zien we de signaallijnen van de uitbreidingsconnector. De I²C-interface is te vinden op pen 3 (SDA) en pen 5 (SCL).

Net als SPI is de I²C-interface ontworpen om met zo min mogelijk signalen te interfacen met andere apparaten. I²C maakt slechts gebruik van twee bidirectionele open-drain-lijnen: Serial Data Line (SDA) en Serial Clock (SCL). Meestal zijn deze voorzien van pullup-weerstanden naar 3,3 V. In de Raspberry Pi zijn dit twee weerstanden van 1k8.

I²C is niet zo snel als bijvoorbeeld de SPI-bus, maar haalt toch snelheden van 100 kbit/s in Standard Mode en 400 kbit/s in Fast Mode.

De Broadcom SoC-chip op de Raspberry Pi heeft twee I²C-interfaces. De originele versie van de Raspberry Pi had maar één I²C interface. Dat is de eerste I²Cinterface (I2C_SDA0 en I2C_SCL0) op de uitbreidingsconnector.

Bij de tweede versie van de Raspberry Pi werd een kleine extra uitbreidingsconnector toegevoegd. Daarmee kwam ruimte voor de tweede I²C-interface beschikbaar, maar er werden ook wat dingen verplaatst. Op de uitbreidingsconnector van versie 2 vinden we nu de tweede I²C-interface (I2C_ SDA1 en I2C_SCL1), terwijl de eerste I²C-

Tabel 1. Penbezetting van de uitbreidingsconnector

Naam	Functie	Alternatief	RPi.GPIO
P1-02	5,0V	-	-
P1-04	5,0V	-	-
P1-06	GND	-	-
P1-08	GPIO14	UART0_TXD	RPi.GPIO8
P1-10	GPIO15	UART0_RXD	RPi.GPIO10
P1-12	GPIO18	PWM0	RPi.GPIO12
P1-14	GND	-	-
P1-16	GPIO23		RPi.GPIO16
P1-18	GPIO24		RPi.GPIO18
P1-20	GND	-	-
P1-22	GPIO25		RPi.GPIO22
P1-24	GPIO8	SPI0_CE0_N	RPi.GPIO24
P1-26	GPIO7	SPI0_CE1_N	RPi.GPIO26

Naam	Board Revision	1	Board Revision 2				
Naam	Functie	Alternatief	Functie	Alternatief			
P1-01	3,3V	-	3,3V	-			
P1-03	GPIO0	I2C0_SDA	GPIO2	I2C1_SDA			
P1-05	GPIO1	I2C0_SCL	GPIO3	I2C1_SCL			
P1-07	GPIO4	GPCLK0	GPIO4	GPCLK0			
P1-09	GND	-	GND	-			
P1-11	GPIO17	RTS0	GPIO17	RTS0			
P1-13	GPIO21		GPIO27				
P1-15	GPIO22		GPIO22				
P1-17	3,3V	-	3,3V	-			
P1-19	GPIO10	SPI0_MOSI	GPIO10	SPI0_MOSI			
P1-21	GPIO9	SPI0_MISO	GPIO9	SPI0_MISO			
P1-23	GPIO11	SPI0_SCLK	GPIO11	SPI0_SCLK			
P1-25	GND	-	GND	-			

Figuur 1. Schema voor de MCP23017 Raspberry Pi port-expander.

interface (I2C_SDA0 en I2C_SCL0) is verplaatst naar de nieuwe, kleinere connector. Dat is een klein maar belangrijk detail om in de gaten te houden als we de I²C op onze Raspberry Pi gaan gebruiken.

Port-expander hardware (opnieuw)

Voor ons I²C-project breiden we het aantal GPIO-lijnen van de Raspberry Pi opnieuw uit met behulp van nog een port-expander. Net als eerder gebruiken we een port-expander van Microchip, maar dit keer een 16-kanaals MCP23017 [1]. Dat is het I²C-broertje van de MCP23S17 die we bij het SPI-project hebben gebruikt.

In **figuur 1** zien we een vereenvoudigd schema van het gebruik van de MCP23017. De chip is verbonden met de I²C-interface van de RPi. In tegenstelling tot de SPIversie van de schakeling zijn er geen chipenable-signalen nodig, dus het schema is heel eenvoudig. Jumpers J1, J2 en J3 zijn voor optionele adreslijnen voor de portexpander, zodat meer dan één expander op de I²C-bus kan worden aangesloten.

Figuur 2 geeft onze hardware weer. We gebruiken weer een kleine extra kaart voor

de interface van onze MC23017. Oplettende lezers hebben al gezien dat dit dezelfde kaart [2] is die we eerder gebruikt hebben. Dat klopt, want deze kaart is zowel geschikt voor de MCP23017 voor I²C als voor de MCP23S17 voor SPI. Met een jumper kiezen we voor SPI of voor I²C.

Installatie van de I²C-tools

Voordat we de I²C-tools kunnen installeren, moeten we wat organisatorische werkzaamheden uitvoeren:

Raspbian moet weten dat we de hardware-I²C-interface willen gebruiken. Standaard is de hardware-I²C uitgeschakeld, dus we moeten dat veranderen door de blacklistfile aan te passen:

sudo nano /etc/modprobe.d/raspiblacklist.conf

Zoek de regel met **blacklist i2c-bcm2708** en plaats een # (hekje) aan het begin van de regel. Daarmee verandert de regel in een commentaarregel. Sla daarna het bestand op.

Daarna moeten we het module-bestand aanpassen met:

Elektor•Post

sudo nano /etc/modules

Voeg de tekst *i2c-dev* toe op een nieuwe regel en sla het bestand op.

Installeer dan het pakket i2c-tools met het commando:

sudo apt-get update
sudo apt-get install i2c-tools

Als dit is geïnstalleerd, moeten we een nieuwe gebruiker toevoegen aan de i2cgroep. Type:

sudo adduser pi i2c

Doe daarna een snelle reboot met:

sudo reboot

Na de reboot kunnen we controleren of de I²C-interfaces beschikbaar zijn. Start een nieuwe LXTerminal-sessie en type...

ls /dev/i2c*

...om te controleren of er twee I²Capparaten worden weergegeven (één voor elke I²C-interface). Als het goed is, zien we:

/dev/i2c-0 /dev/i2c-1

We kunnen ze ook testen. Op een Rev 1 Pi gaat dat met:

sudo i2cdetect -y 0

en op een Rev 2 Pi met:

		pi@raspberrypi: ~ 🗕 🗖									×						
File		<u>E</u> dit]	abs	E	lelp											
pi@	as	pber	r y	ni -	- \$	su	do	i2c	det	ect	- y	0					
· -	0	1	2	3	4	5	6	; 7	8	9	a	Ь	d	e	f		-
00:																	
10:																	
20:	20																
30:																	
40:																	
50:																	
60:																	
70:																	
pi@	as	pber	тy	pi -													
																	-
																	-

sudo i2cdetect -y 1

Het resultaat moet er ongeveer uit zien als in **figuur 3**.

Installeren van de I²C-library voor Python

Voor de voorbeelden in dit project gebruiken we Python 2. Zoals we al weten uit de vorige delen, is Python standaard al geïnstalleerd in de Raspbian-distributie. Maar er is geen voorziening voor de I²Cinterface. We kunnen dat verhelpen door

Figuur 5. IDLE Python-shell.

Figuur 2. Pi met een MCP23017opsteekprint.

Figuur 3. Uitvoer van "i2cdetect".

Figuur 4. LXTerminal.

Project No. 11

Elektor•Post

de I²C Python wrapper/library te installeren. Start dus weer een LXTerminal-sessie, zoals in **figuur 4** en geef de volgende commando's:

sudo apt-get install python-smbus

Als dit is geïnstalleerd, zijn we klaar om de I²C met Python te gebruiken.

Voorbeeldprogramma: mcp23017.py Nu smbus is geïnstalleerd kunnen we een klein testprogramma schrijven om LED's aan te sturen via de Port-Expander GPIO.

Dubbelklik het pictogram IDLE op het bureaublad van de Pi om de Python Shell

mcp23017.py - /home/pi/mcp23017.py _ C x Eile Edit Format Run Options Windows Help #1 /usr/bin/python import smbus import time # 1/usr/bin/python # Create 12C instance and open bus 12cbus.write_byte_data (address, 0x00, 0x00) 12cbus.write_byte_data (address, 0x01, 0xFF) # Main Loop while True: # Turn off LED's i2cbus.write_byte_data (address, 0x12, 0x00) time.sleep (1) # Turn On LED's i2cbus.write_byte_data (address, 0x12, 0x01) time.sleep (1)

Figuur 6. IDLE-editor

```
Listing
#! /usr/bin/python
import smbus
import time
# I2C address of MCP23017
address = 0x20
# Create I2C instance and open bus
i2cbus = smbus.SMBus(0)
# Configure MCP23017
i2cbus.write_byte_data(address,0x00,0x00) # Set Bank A to outputs
i2cbus.write_byte_data(address,0x01,0xFF) # Set Bank B to inputs
# Main loop
while True:
 # Turn off LEDs
 i2cbus.write byte data (address,0x12,0x00)
 time.sleep(1)
 # Turn on PortA.0
 i2cbus.write_byte_data (address,0x12,0x01)
 time.sleep(1)
Opmerking: Verander voor Rev 2 Pi-kaarten de regel:
i2cbus = smbus.SMBus(0)
                                     i2cbus = smbus.SMBus(1)
                            naar
```

Elektor•Post

en IDE te starten (zie **figuur 5**).

Kies nu de optie File in het menu en maak een nieuw programma. Dit start de IDE-editor.

Voer nu met de IDLE-editor het programma in de **listing** in (zie **figuur 6**).

Sla het programma na het intypen op en schakel over naar een LXTerminal. Geef dan het volgende commando om het programma uitvoerbaar te maken:

sudo chmod +x mcp23017.py

Nu kan het programma worden uitgevoerd met het commando:

sudo ./mcp23017.py

Tabel 2 geeft een kort overzicht van debesturingsregisters van de MCP23x17.

Tabel 2. Registeradressen van de MCP23x17

Weblinks

[1] ww1.microchip.com/downloads/en/ devicedoc/21952b.pdf

[2] www.dtronixs.com

Adres	Adres							
IOCON.BANK = 1	IOCON.BANK = 0	Register	Beschrijving					
0x00 / 0 dec	0x00 / 0 dec	IODIRA	I/O Direction Register voor Poort A					
0x10 / 16 dec	0x01 / 1 dec	IODIRB	I/O Direction Register voor Poort B					
0x01 / 1 dec	0x02 / 2 dec	IPOLA	Input Polarity Poortregister voor Poort A					
0x11 / 17 dec	0x03 / 3 dec	IPOLB	Input Polarity Poortregister voor Poort B					
0x02 / 2 dec	0x04 / 4 dec	GPINTENA	Interrupt-n-Change Control Register Poort A					
0x12 / 18 dec	0x05 / 5 dec	GPINTENB	Interrupt-n-Change Control Register Poort B					
0x03 / 3 dec	0x06 / 6 dec	DEFVALA	Default Compare Register voor GPINTENA					
0x13 / 19 dec	0x07 / 7 dec	DEFVALB	Default Compare Register voor GPINTENB					
0x04 / 4 dec	0x08 / 8 dec	INTCONA	Interrupt Control Register voor Poort A					
0x14 / 20 dec	0x09 / 9 dec	INTCONB	Interrupt Control Register voor Poort B					
0x05 / 5 dec	0x0A / 10 dec	IOCON	I/O-Expander Configuration Register					
0x15 / 21 dec	0x0B / 11 dec	IOCON	I/O-Expander Configuration Register					
0x06 / 6 dec	0x0C / 12 dec	GPPUA	Pull-Up Resistor Configuration Register Poort A					
0x16 / 22 dec	0x0D / 13 dec	GPPUB	Pull-Up Resistor Configuration Register Poort B					
0x07 / 7 dec	0x0E / 14 dec	INTFA	Interrupt Flag Register voor Poort A					
0x17 / 23 dec	0x0F / 15 dec	INTFB	Interrupt Flag Register voor Poort B					
0x08 / 8 dec	0x10 / 16 dec	INTCAPA	Interrupt Capture Register voor Poort A					
0x18 / 24 dec	0x11 / 17 dec	INTCAPB	Interrupt Capture Register voor Poort B					
0x09 / 9 dec	0x12 / 18 dec	GPIOA	Poortregister voor Poort A					
0x19 / 25 dec	0x13 / 19 dec	GPIOB	Poortregister voor Poort B					
0x0A / 10 dec	0x14 / 20 dec	OLATA	Output Latch Register voor Poort A					
0x1A / 26 dec	0x15 / 21 dec	OLATB	Output Latch Register voor Poort B					

(130178)